Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Duration: 3 Hrs.		Maximum Marks: 60
Knowledge is Power	Programme: B. Tech.	Branch/Specialisation: All
UNIVERSITY	EN3BS01 Engineering Mathematics-I	
	End Sem (Odd) Examination Dec-2017	
01-6	Faculty	of Engineering

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	If for the system $AX=B$, we get	$\rho(A) = \rho(A:B) = r = n$, the	1
		number of unknowns, then syste	em has	
		(a) Unique solution	(b) No solution	
		(c) Infinite no. of solution	(d) None of these	
	ii.	Let A be a matrix such that the	ere exists a square sub matrix of	1
		order r which is non-singular an	nd every sub matrix of order $r+1$	
		or higher is singular, then the ran	ik of A is	
		(a) = $r + 1$	(b) $< r$	
		(c) > r	(d) = r	
	iii.	The necessary condition for the	ne existence of a maxima or a	1
		minima of $f(x, y)$ at $x=a$ and $y=b$	<i>b</i> are	
		(a) $\left(\frac{\partial f}{\partial x}\right)_{(a,b)} = 0$ and $\left(\frac{\partial f}{\partial y}\right)_{(a,b)}$	(b) $\left(\frac{\partial f}{\partial x}\right)_{(a,b)} \neq 0$ and $\left(\frac{\partial f}{\partial y}\right)_{(a,b)}$	
		= 0	= 0	
		(c) $\left(\frac{\partial f}{\partial x}\right)_{(a,b)} = 0$ and $\left(\frac{\partial f}{\partial y}\right)_{(a,b)}$	(d) $\left(\frac{\partial f}{\partial x}\right)_{(a,b)} \neq 0$ and $\left(\frac{\partial f}{\partial y}\right)_{(a,b)}$	
		≠0	$\neq 0$	
	iv.	Sin x =		1
		(a) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$	(b) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$	
		(c) $\frac{x}{1!} \frac{x^3}{3!} + \frac{x^5}{5!} \dots$	(d) $\frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$	
	v.	The value of $ n (1-n)$, is		1
		(a) $\beta(n,n)$	(b) $\beta(n,1-n)$	
		(c) $\beta(n, 1+n)$	(d) $\beta(1-n,1-n)$	
		<u>-</u> · · ·	דת	

P.T.O.

1

1

1

1

1

4

6

vi. The value of $\beta(2,3)$ is

- (b) 12 (a) 1 (c) $\frac{1}{12}$ (d) 2 vii. The necessary and sufficient condition that the differential equation M dx + N dy = 0 be exact is that (a) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ (b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (c) $\frac{\partial M}{\partial r} = \frac{\partial N}{\partial v}$ (d) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$ viii. Particular integral of $(D^2 + a^2) = cosax$ is (a) $\frac{x}{2a}$ sinax (b) $\frac{-x}{2a}$ sinax (c) $\frac{x}{2a}$ cosax (d) $\frac{-x}{2a} \cos ax$ ix. y = x is a part of C.F. of the equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$ if (b) Px - 0 = 0(a) Px + 0 = 0(d) P - Ox = 0(c) P + Qx = 0X. The C.F. of the equation $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = e^{3x}$ is given by (a) $y_c = c_1 e^{3x} + x c_2 e^{3x}$ (b) $y_c = c_1 e^{3x} - xc_2 e^{3x}$ (a) $y_c = c_1 e^{3x} + xc_2 e^{3x}$ (b) $y_c = c_1 e^{3x} - xc_2 e^{3x}$ (c) $y_c = c_1 e^{3x} + c_2 e^{3x}$ (d) $y_c = c_1 e^{3x} - c_2 e^{3x}$ Q.2 i. Reduce the matrix to normal form and find its rank, where $A = \begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 3 & 2 \end{bmatrix}$
 - ii. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & 1 & 2 \end{bmatrix}$. Also find A^{-1} .
- OR iii. Find the Eigen values and Eigen vectors of matrix **6** $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$
- Q.3 i. Find the first four terms in the expansion of by e^{sinx} McLaurin's 4 theorem.

Find the maximum and minimum values of the function u =ii. 6 $x^{3}y^{2}(1-x-y)$. OR iii. If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, then prove that 6 (i) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x+y+z}$. (ii) $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$. Q.4 i. Evaluate $\lim_{n \to \infty} \left\{ \frac{n!}{n^n} \right\}^{1/n}$. 4 ii. Express the integral $\int_0^1 x^m (1-x^n)^p dx$ in terms of beta/gamma 6 function and hence evaluate $(i) \int_0^1 x^2 (1-x^2)^4 dx \quad (ii) \int_0^1 x^5 (1-x^3)^{10} dx$ OR iii. Find the area enclosed by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$. 6 Q.5 i. Solve $\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0.$ 4 ii. Solve $\frac{dx}{dt} + y = sint$, $\frac{dy}{dt} + x = cost$, given that x = 2 and 6 v = 0, when t = 0. OR iii. Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = sin(logx)$. 6 Solve by the method of variation of parameters Q.6 i. 4 $\frac{d^2y}{dx^2} + 4y = 4tan2x$ ii. Solve $x \frac{d^2 y}{dx^2} - (2x - 1)\frac{dy}{dx} + (x - 1)y = e^x$, given that $y = e^x$ 6 is one integral. OR iii. Solve in series the equation $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0$ 6

	Medi-Caps University, Indose Engineering Midthematics -I EN3BSO1, DEC-2017 PAGE NO.: DATE:	MARKS
<u>gue.1</u>	2 cas Unique solution.	1
(ບັນົງ	(d) = x	1
(Tii)	$(a)(\partial f) = 0$ and $(\partial f) = 0$ $(\partial x)(a,b)$ $(\partial y)(a,b)$	L
(iv)	$Sinx = (C) x - \frac{x^3}{3!} + \frac{x^5}{5!}$	T
(٧)	(b) B(n, 1-n)	1
(vis	<u>(C) 1</u> 12	T
(1)	$\frac{(b)}{\partial M} = \frac{\partial N}{\partial x}$	<u> </u>
(۷۱۱۱۰)	(9) X Sinox 29	T
<u>ر ×ز)</u>	CC) P + Q x = 0	1
(x)	(a) $y_{c} = c_1 e^{3x} + x c_2 e^{3x}$	1
Que 2(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$C_1(\frac{1}{8}), C_1(\frac{1}{2})$ $\sim 0.3.21$	
14	$\sim \boxed{\begin{array}{c} 0 & 3 & 2 \\ -1 & -1 & -3 & 2 \\ \end{array}} (2)(+) (2)(+)$	+2
	$\frac{C_{21}(-1)}{C_{21}(-3)}, \frac{C_{31}(-3)}{C_{41}(-3)}, \frac{C_{11}(-3)}{C_{11}(-3)}, \frac{C_{11}(-3)}{C_{11$	
		·

	Medicape variation Indee	
	PAGE NO.: 2	" a.
ama	DATE:	MARKS
	C34	h Line
	~ [0 0 0]	
	0 0 0	
	100501	
	$C_{2}(\pm)$	
- 4	-1(5)	and the second
	6010	- CVS
		1.1
4	\sim [I ₃ , 0]	++
	P(A) - Z	
1	CON TO SHOK	HV3
ue.201		
L	A = -1 2 -1	
	1 -1 2	
<u> </u>	we know that the characteristic equation of the	
	malrix A is given by	
	IN ALL-U	OS LOT -
	- 2 - = 0	
		1.0
<u></u>	or $\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0 \longrightarrow (9)$	+1
	To verify Cayly Hamilton Huosey, we will show that	
	$A^{-} - 6A^{-} + 9A^{-} - 4I = 0 \rightarrow 6$	
	$A^2 = \begin{bmatrix} -5 & 5 \\ -5 & 5 \end{bmatrix}$	41
1	5-56	
1		

$$\begin{array}{c} Regimes \\ \hline \\ R^{2} = A^{2} \cdot A = \begin{bmatrix} 22 & -21 & 21 \\ -21 & -21 & 22 \\ -21 & -21 & 22 \end{bmatrix} \\ \hline \\ Hence \quad A^{3} = 6A^{2} + 9A - 4T = 0 \\ Hence \quad A^{3} = 6A^{2} + 9A - 4T = 0 \\ \hline \\ Hence \quad A^{3} = 6A^{2} + 9A - 4T = 0 \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = \pm (A^{2} - 6A + 9I) \\ \hline \\ A^{-1} = -1 \\ \hline \\ A^{-1} = -1 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = -4 \\ \hline \\ A^{-1} = 0 \\ \hline \\ A^{-1} = 0 \\ \hline \\ \\ A^{-1}$$

PAGE NO .: 4 The ergennecter x cossesponding to 1=3 $(A-31)X_2=0$; $X_2=\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$ 5 - 6 2 -6 4 - 4XZ = 0 2-40 on solving $x_1 = x_2 - x_3 = k$ => : X2= [2] is the eigen meter for A=3. +1.5 The eigen meter X3 corresponding to d=15 (A-15I)X3=0 23 2 -4 -12 on solving $\frac{\chi_1 - \chi_2 - \chi_3}{2 -2 -2}$ X3 = 2 is the eigenvector for d=15 +1.5 ue.3(i) let $y = e^{sinx} \Rightarrow (y)_0 = 1$ Differentiating successively, we get $y_1 = \cos x$, esinz or $\chi_1 = \chi_{cosx} = \chi_{1,0} = 1$ +1 8 y2 = y1 cosx - y sinx => (2) = 1 +1 y2 - y2 cosx - 24, sinx -y cosx => (y2) = 0 $y_4 = y_3 \cos n - 3y_2 \sin n - 3y_1 \cos n + y \sin n =)(y_4)_{0} = -3 + 1$ By Mclausin's theorem $y = y_0 + \frac{1}{2} (\frac{y_1}{2})_0 + \frac{1}{2} (\frac{y_2}{2})_0 + \cdots = \frac{1}{2}$ we get $e^{s \ln x} = 1 + x + \frac{x^2}{2} - \frac{x^4}{2} - \cdots = \frac{1}{2}$ +1

PAGE NO .: 5 . 2 Que 3(ii) $u = x^{3}y^{2}(1-x-y)$ $\frac{34}{3x} = 3x^2y^2 - \frac{4x^3y^2}{3x^2} - \frac{3x^2y^3}{3x}$ $\frac{\partial 4}{\partial y} = 2x^3y - 2x^4y - 3x^3y^2 \rightarrow (b)$ +1 for man. or min of 4, we have put Du =0; and Du =0 Dr Dy on solving eque. (a) & (b), we get $\chi = \pm ; \quad \chi = \pm \frac{1}{2}$ +1 $s = \frac{224}{3x^2} = 6xy^2 - 10x^2y^2 - 6xy^3$ $\frac{2}{(\frac{1}{2},\frac{1}{2})} = -\frac{1}{9}$ +1 $S = \frac{\partial^2 u}{\partial x \partial y} = 6x^2 y - 8x^3 y - 9x^2 y^2$ $S = -\frac{1}{12} \text{ at } (\frac{1}{2}, \frac{1}{2})$ +1 $t = \frac{\partial^2 4}{\partial y^2} = 2x^3 - 2x^4 - 6x^3 y$ $t = -\frac{1}{2}at(\frac{1}{2},\frac{1}{2})$ +1 Finally, $\pounds t - s^2 = \frac{1}{72} > 0 (+ve) \text{ and } L < 0$ Thursfor is has a max, at (1, +) $U_{max} = \frac{1}{432}$ +1

PAGE NO .: pue. 3(1) $u = \log(x^3 + y^3 + z^3 - 3xyz)$ $\frac{34}{3x} = \frac{(3x^2 - 3yz)}{(x^3 + y^3 + z^3 - 3xyz)}$ $\rightarrow (D)$ $\frac{\partial 4}{\partial y} = \frac{(3y^2 - 3xz)}{(x^3 + y^3 + z^3 - 3xyz)} \rightarrow (2)$ +1.5 $\frac{34}{37} = (3z^2 - 3xy)/(x^3 + y^3 + z^3 - 3xyz) \rightarrow 3$ adding (D (D) and (3) +1.5 $\frac{3u}{\partial x}$, $\frac{3u}{\partial y}$, $\frac{3u}{\partial z}$ = $\frac{3}{x+y+z}$ For (ii) part $\frac{\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u}{\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)} = \frac{\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)}{\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)} = \frac{\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)}{\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)}$ +1.5 $= \left(\frac{3}{3x} + \frac{3}{3y} + \frac{3}{3z}\right) \left(\frac{3}{3x + y + z}\right)$ $(\frac{2}{2x} + \frac{2}{2y} + \frac{2}{2z})^{24} = -9$ $(x+y+z)^{2}$ +105 el. 4(1) let I = lim { [n 2 /n] $\frac{\text{or } \underline{1} = \underline{\text{um}} \quad \underline{S} \pm \underline{2} \cdot \underline{3} - \underline{n} \underbrace{2}_{n}}{\underline{n} + \underline{n}} \underbrace{n}_{n} \underbrace{n}_{$ $\Rightarrow \log I = \lim_{n \to \infty} \pm \left[\log \pm + \log \pm + \cdots + \log \pm \right]$ +1 $= \lim_{n \to \infty} \sum_{n=1}^{\infty} \frac{\pm}{n} \log\left(\frac{2}{n}\right) \longrightarrow (1)$ put 1 = x, $\pm dx$, \overline{z} by findupper limit at 2 = n \overline{n} , \overline{n} , \overline{z} by findupper limit at 2 = n $\lim_{n \to \infty} \frac{x}{n} = 1$ $= \int (\log x) dx$ $\lim_{n \to \infty} \frac{x}{n} = 0$ +1 $= \left[\chi \log \chi \right]' - \int' \chi \cdot \frac{1}{\pi} d\chi = -1$ ie. $\log T = T = e^{-1} = \frac{1}{e}$ +1

	PAGE NO: T	30
Que . 4 (11)	$\mu t I = \left[x^{m} (1 - x^{n})^{p} dx \longrightarrow O \right]$	
,	put 2n=y ie x=y/n in D	
	$\therefore dx = \frac{1}{2} g(m)^{-1}$	+1
	: By (D) we have	
	$\underline{T} = \underline{+} \int_{0}^{1} \frac{1}{(1-y)^{r}} \frac{1}{y} \frac{1}{(1-y)^{r}} \frac{1}{y} \frac{1}{(1-y)^{r}} \frac{1}{y} \frac{1}{y} \frac{1}{y}$	
	$= \pm \int_{0}^{1} y(\underline{m}_{n}^{+}) - 1, (1-y)^{(p+1)-1} dy$	+1
	$T = \frac{1}{n} \beta \left(\frac{m+1}{n}, p+1 \right) \rightarrow (2)$	+1
-7.1-B.		
	pulling $m=5$, $n=3$, $p=10$, we get from (2)	
	$\int_{0}^{1} x^{5} (1-x^{3})^{10} dx = \pm \beta(2,11)$	
AL F	i.e. $\int_{0}^{1} x^{5} (1-x^{3})^{10} dx = 1$ 396	+1.5
	Agein pulling m=2, n=2, p=4 in (2), we get	
	121,214, 1 13 5	main
	$\int_0^{\infty} (1-\alpha) q \lambda = 2 \frac{1}{13+5}$	
Robie		
	$ie_{1} \int x^{2} (1-x^{2}) dx = 128$	+1.5
nue.4(111)	The given parabolas are	
	$\frac{1}{2} = 400 \longrightarrow (1)$	
	To brick of interlection of have loter are attriced by	
	colviner (i) and (ii)	
	is $y^2 = 4a\sqrt{4ay} \Rightarrow 34 = 64a^3y$	
	=> y=0 or y=4a	
3-1-1-1	hence promis when $y=0$, $x=0$	
	when y=4a x=4a L	7
	Thus the points of intersection are O(0,0) and A (49,49)	1 + 105

PAGE NO .: 8 DATE: The sequered area is ODAPO The segion of integration can be expressed as $0 \le x \le 40$; $x^2 \le y \le \sqrt{40x}$ 40y==40x +105 -. The sequind area I = 149 / 49x dredy $= \int \frac{4\alpha}{\sqrt{4\alpha}} \left[\sqrt{4\alpha} - \frac{\chi^2}{4\alpha} \right] d\chi$ +105 $2a^{V_2} \left[\frac{2}{3}\chi^{3/2}\right]^{4a} - \frac{1}{4a} \left[\frac{\chi^3}{3}\right]^{4a}$ $= 32 q^2 - 16 q^2 = 16 q^2$ $= 3 A_{141}$ I +105 Ausious $ul.5(i) \quad Cinen diff. equ. (1+e^{x/y})dx + e^{x/y}(1-\frac{x}{y})dy = 0 \quad (1)$ Huse $M = 1 + e^{\alpha/y}$, $N = e^{\alpha/y} (1 - \alpha/y)$ DM = DN = -x exly, given equ. is exact. Dy Dx y2 ; given equ. is exact. +105 $\int M dn = \int (1 + e^{x/y}) dn = x + y e^{x/y}$ y-const. $\int_{x-cont} \int e^{xty}(1-\frac{x}{y}) dy = \int e^{xt}(1-xt) \cdot \left(-\frac{dt}{t^2}\right)$ $= -\int e^{+xt} dt + \int x e^{txt} dt$ $= e^{\chi t}$ i.e. Ja-cont. = Jealy (-: pulting t=+ +1.5 clearly the term yexiy is already in integration of M Hunce the sequired sol. Indix + [Ndy = C => n+ ye x/y= C y-coult (Fractorian) Answerf

•	PAGE NO.: DATE:	iree
que stij	Given diff. equ. is	
	$\frac{dx + y = sint}{dt} \xrightarrow{\text{and}} \frac{dy + x = cost}{dt} \xrightarrow{\rightarrow} $	
	or $Dx + y = sint$ $x + Dy = cost$	
	solving equ. (iii) and (iv) $\rightarrow 0$	
	$D^2x + DY = D $ slot.	
	x + Dy = cost	
	$(D^2-1)\chi=0 \longrightarrow $	+105
1 +-	which is a linear diff equ.	
	with constant coefficient-	
	The A-E of (1) is m2-1=0	
	$m = \pm 1$	
	- sol. of D is guen by x = ciet + ciet	+2.5
	=>dx = Ciet-ciet	-
14	wing (D in (D) at -) (D)	
	$y = sint - c_1 e^{t} + c_2 e^{t} \rightarrow (\overline{u})$	+105
	Using boundary conditions is put x = 2, y = 0 at t=	0
	$c_1 + c_2 = 2 (1 - c_2 = 0)$	
	Thus $C_{i} = 1$ $C_{2} = 1$	
	Hence the sequired solution is	
	x= et + et d= sint-et + et Auswer	+1.5
2. 0 57512		
2000-3(11)	The given ant equ. is	
	dx2 dx - Dhomogeneous diff. equ.	
	So pulling x = e ^z => z = logx	
	$\chi q = D'; \chi^2 d^2 = D'(D-1), where D'=d$	
	Then equ. D becomes dz	
	(D'(D'-1) - 3D' + 5)y = sinz	
	or $(D^{\prime 2} - 4D^{\prime 2} + 5)y = sinz \rightarrow (2)$	+1

PAGE NO .: O The A-E. of (2) is m2-4m+5=0 +1 $f: m = 4 \pm \sqrt{16 - 20} = 2 \pm i$ $C_{s}F_{s} = e^{2Z} [C_{1} codz + C_{2} sinz]$ +1 or $C \cdot F = \gamma^2 \left[C_1 \cos(\log x) + \cos(\log x)\right]$ $\frac{P.1}{(D'^2-4D'+5)}$ $= 1 \quad sinz = 1 \quad cinz = -1 \quad$ +1 $\frac{-1}{4} \left(\frac{1}{(D'-1)} \times \frac{(D'+1)}{(D'+1)} \right) = \frac{-1}{(D'+1)}$ = -1 [(D'+1) sinz] $4 [(D'^2-1)]$ $= -1 \left(\frac{(D^{1}+1)}{(-1^{2}-1)} \right)$ +1 $= \pm (D^{1} \sin 2 + \sin 2)$ $P-I = \frac{1}{8} \left[\cos(\log x) + \sin(\log x) \right]$ The sequind general sol, is Y = C.F. + P.I. $f = \chi^2 \left[C_1 \cos(\log x) + C_2 \sin(\log x) \right] + + \left[\cos(\log x) + \sin\log x \right] + 1$

- Rajshree ----PAGE NO .: 1 dry + 4y = 4 tem2x D dx2 on comparing with dry + pdy + Qy = R, her we have dx2 dx dx pue. 6(i) P=0 0=4 R=41912x The A.E. of Die m2+4=0 =) m= ±2i $\therefore \quad C \circ F = \forall c = C_1 \cos 2x + C_2 \sin 2x$ +1 Let U = COS2X V=Sin2X ||' = -2sin2x y' = 2cos2xNOW U = |U| |V| = |-2517271 2005271 $w = 2 \neq 0$ +1 Suppose the complete sol, of D is y = Ale + B.v., where A and Bare asbitrary functions of x only; which are obtained by formula $\frac{dA = -v_0R}{dx} \xrightarrow{=} \frac{dA = -2\int 1 - c_0 d^2 2x}{dx}$ on integrating born not we get A = -2 (Sec2x - cos2x) dx + C1 -2[log(sec2x+ten2x) - sin2x]+C -: A = -log (secont tenen) + sin 2x + CI +1 Thus the complete sol. is given by y = CI COREX + CZSIN2X - COREX log (Sec2x + Hernex) Anner

PAGE NO.: 2 DATE: nee. 6(ii) The given diff equ. is $x d^{2y} - (2x - 1) dy + (x - 1)y = e^{x}$ or day $+ (-2++) dy + (1-+) y = e^{\chi}$ $dx^2 + (-2++) dx + (1-+) y = e^{\chi}$ $dx^2 + 2 dx + p dy + p dy + p dy = R, we get$ $P = -2 + \frac{1}{2}; \quad Q = 1 - \frac{1}{2}; \quad R = \frac{e^{2}}{2}$ But given that (hory) = ex is a part of c.F. suppose that the complete sol. of () is given by y = y10 v or U. v=versture & is a function of ranky putting y = v. y. 10 equ. D; we get $\frac{d^{2}V}{dx^{2}} + \left[\begin{array}{c} p + \frac{2}{y} \\ y \\ y \\ dx \end{array} \right] \frac{dv}{dx} = R$ $\frac{d^2u}{dx^2} + \left[\frac{-2++}{x} + \frac{2}{e^x} - \frac{e^x}{dx} \right] \frac{du}{dx} = \frac{e^x}{x \cdot e^x} \left[\frac{-y}{e^x} + \frac{1}{e^x} \right] + \frac{1}{e^x}$ $\frac{d^2 v}{dx^2} + \frac{1}{x} \frac{dv}{dx} = \frac{1}{x} \xrightarrow{\rightarrow} \textcircled{B}$ 41 $put \frac{dv}{dx} = t \text{ and } dt = d2v$ $wx gt \frac{dx}{dx} \frac{dx}{dx^2}$ $\frac{dt + t}{dx} = \frac{1}{x} \xrightarrow{\longrightarrow} (4)$ $\frac{dt + t}{dx} = \frac{1}{x} \xrightarrow{\longrightarrow} (4)$ +1 ++ ie. IF. = X hence sol of (1) is t.x = Jx.+dx+C, (-: YXIF= | QXIF | dM+C) $tx = c_1 + x$ or do = ci + 1 on int-grating VE = Ci logn+n+co Thus complete sol. (2) is y = y1.12 +1 y= ex, (C, logx+x+c2) Annuer

PAGE NO .: 13 DATE: MARKI Que 6(iii) Ginen diff-eau, (1-x2) dey -xdy +4y=0 on comparing with Po(x) dy + Pidy + P2(x) dy =0 Here Po(x) = (1-22) Also $P(x) \neq 0$ at x=0Hence x=0 is an ordinary point of equ. (1). +1 and dry dx $dx_2 = 2q_2 + 6q_3x + \dots + k(k-1)q_k x^{k-2} + \dots$ + 1 putting the values of y, dy and day to equ. D we get $(1-\chi^2)[2q_2 + 6q_2)t = - + K(K-1)q_K \chi^{K-2} -$ ---+ Kak xk++-[90+9,x+02x2+--++ 9KxK+--] =0 200+6020+--+K(K-1)9Kx1K-2+---+ - - + K(K-1)9KxK+ --] 29222 [a1x+2a, x2+--K (2000) xx+---] +4[q0+q1x+q2x2+--+qKxK+--]=0 +1 Equality to zero; the coefficient of 20 is (constant) $2q_2 + 4q_0 = 0 \Rightarrow q_2 = -2q_0$ Equating to zue; the coefficients of x', we get $6a_3 - a_1 + 4a_1 = 0 \Rightarrow 6a_3 = -3a_1 \Rightarrow [a_3 = -a_1]$ +1 Equality to gero; the coefficient of xk, we get $(K+2)(k+1)Q_{k+2}-k(k-1)Q_{k}-kQ_{k}+4Q_{k}=0$ $\frac{\langle k+2 \rangle}{(k+1)} = \frac{\langle k-2 \rangle}{\langle k+1 \rangle} \frac{\langle k \rangle}{\langle k+1 \rangle} = \frac{\langle k-2 \rangle}{\langle k+1 \rangle} \frac{\langle k-2 \rangle}{\langle k+1 \rangle} \frac{\langle k-2 \rangle}{\langle k+1 \rangle} \frac{\langle k-2 \rangle}{\langle k-2 \rangle} \frac{\langle$ +1 $a_{4}=0$; $a_{5}=\frac{a_{3}}{4}=-\frac{1}{8}a_{0}$; $a_{6}=0$; $a_{7}=-\frac{3}{2}a_{5}$ Finally, putting the values of @ 92, 93, 94, 95, -- in equ. (1) $\begin{array}{c} y = q_0 + q_1 \chi + (-2q_0) \chi^2 + (-q_1) \chi^3 + 0 + (-q_2) \chi^2 + \\ ox \quad y = q_0 (1 - 2\chi^2) + q_1 \left(\chi - \frac{\chi^2}{2} - \frac{\chi^2}{8} + \frac{\chi^2}{16} - -\right). \end{array}$ +1 Ausure .